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INTRODUCTION

Modes of inheritance of human diseases are usually studied by analyzing family
and pedigree data. A child having a disease under consideration is called "affected,"
otherwise it is called "normal." It appears that many rare diseases are inherited as
simple recessives or as simple dominants. For rare diseases, the carriers of deleterious
genes are usually heterozygotes. It follows that each of three basic parental pheno-
typic matings (Normal X Normal, Normal X Affected, and Affected X Affected)
corresponds to genotypic matings in which one or both parents are heterozygotes.

Let 0 be the probability that a child born in a family with a given parental geno-
typic mating type will be affected. Thus, the probability that in such a family of size
s there will be r affected children is

Pr(r) = (S)Or(1 - O)n-r r = 0, 1, ... , s. (1)

The probability in (1), considered as a function of the random variable r, is called the
segregation distribution, and 0 is called the segregation parameter. Statistical methods
developed for estimating and testing hypotheses about 0 are known as segregation
analysis.

Since computer facilities are available, common traits (not necessarily diseases) such
as blood groups, for instance, can also be analyzed, using family data. For common
traits, there may be more than one segregation parameter for a given segregation
distribution and more than one segregation distribution within a given phenotypic
mating type. Statistical methods in which two or more distinct and functionally
independent segregation parameters are involved in the analysis of family data will
be called complex segregation analysis.

Complex segregation analysis, in which two phenotypic classes (affected and nor-
mal) were distinguished, has been presented in my previous paper [1]. In the present
paper, the method will be generalized to situations in which more than two phenotypic
classes are considered. Family data on multiallelic inheritance and multiloci inheri-
tance with or without linkage are examples. These models can be complicated by
incomplete penetrance, different fitnesses of genotypes, inbreeding, etc. General
models for complex segregation analysis will be derived for autosomal and X-linked
inheritance, using various sampling techniques.
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AUTOSOMAL INHERITANCE. A RANDOM SAMPLE OF FAMILIES

In this section, consider models associated with autosomal inheritance so that the
numbers of possible genotypes in females and males are the same. First, only experi-
ments in which a random sample offamilies is selected will be considered. Two situa-
tions will be distinguished: (1) information on the phenotypes of parents is not avail-
able; and (2) information is available.

No Information Available About Parental Phenotypes

First consider families of fixed size s so that the phrase "families of size s" will be
often omitted.

1. Consider a certain character which is supposed to be controlled by a certain
genetic system and which gives rise to K phenotypic forms. Let k (k < K) be the
number of phenotypic forms to be observed, and so classify the individuals into k
mutually exclusive categories, e1, e2, . . . , Ck. Call this the "C classification." For
instance, in the ABO-blood group system, six phenotypic classes (0, A1, A2, B, A1B,
A2B), or four classes (0, A, B, AB), or only two classes (A and non-A), etc., may be
distinguished.

2. Let f be the number of possible genotypes associated with this mode of in-
heritance. It is sometimes convenient to distinguish between the genotypes of the
mother and of the father (e.g., certain maternal [or paternal] genotypes may influence
segregation ratios). Let /i,, be the expected proportion of genotypic matings u X v.
For the entire population,

f f

E L41UlV = 1 . (2)
u=1 v=1

Assuming that the female and male genotype frequencies are equal and the ith
genotype has the frequency 6i, with

f

Sf= 1,
i=l

then for random mating
Auv = 4'/v, u,v = 1, 2, ... ,f. (3)

3. Let 0t(uv) (I = 1, 2,... , k) be the probability that a child born in a family with
parental genotypes u X v is classified into the 61 category. Then

k

ZOl(uv) 1. (4)
1=1

Let rj (I = 1, 2, . . , k) be the observed number of children within the category
e1, in a family of size s. Then

k

Er, = s. (5)
1=1
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Thus, for a family of size s, given that the parental genotypes are u X v, there is the
following distribution of the children:

Category e1 e2 ... ek Total
Probability 61(uv) 02(uv) Ok(uV) 1
No. of children r1 r2 . . . s.

The quantities r1, r2, . ., rk considered as random variables have the (conditional)
multinomial distribution

Ps(2)(rr2, rk) Vr!r2! .. . r*! 0(uv) 2(uv) . . .k(uv) (6)

[Note that, in fact, PS(uv) (ri, r2, . . . , rk) is the multinomial probability
Pr(ri, r2, . . ., rk; s[mating u X v)].

By analogy to (1), call (6) a (multinomial) segregation distribution, and the parame-
ters Oi(uv) (I = 1, 2, . .. , k) will be called segregation parameters.

4. Let P,(ri, r2, .. ., rk) be the probability that a family of size s selected at ran-
dom from the entire population will have ri children in the category C1, r2 children
in the category C2, . . ., and rk children in the category Ck, with

k
Er, = s

Thus,
f f

P8(ri, r2 . * ., rk) = E ZVPuvPs(Uv)(r1, r2, * rk) * (7)

[Note that some terms in the right hand side of eq. (7) may be zeros.]
5. The probabilities 41v can be functions of some genetic parameters such as gene

frequencies, inbreeding coefficient, fitnesses of genotypes, etc. Some of these parame-
ters might be functionally dependent (e.g., gene frequencies add up to one). Similarly,
6l(uv) can be functions of other parameters such as penetrance, fitnesses, and linkage.
Again, some of these parameters may be functionally dependent. In most cases, it
would not be difficult to find the total number, M, of parameters which are distinct
and functionally independent. Let us denote these parameters by y' = ('Yl, 2, * * ,
YM). Thus the probability P8 in (7) is a certain function ofM functionally independent
parameters yi's and can be written more precisely:

P,(ri r2, * * * X rk) = P8(r1, r2, * * X rk; Y) * (8)

6. In evaluating the probability P8 from (7), it has been allowed, in the general
case, for f2 different matings andf2 segregation distributions defined in (6). In fact,
there may not be so many.

First, maternal and paternal genotypes are not usually distinguished so that the
matings u X v and v X u can be considered as the same. Thus, there will be only
f(f+ 1)/2 different genotypic matings.

Second, different genotypic matings may have the same segregation distributions.
For instance, in the ABO-blood group system, matings AA X BO will produce only
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offspring of blood groups A and AB with equal probabilities, and the same applies to
matings AA X AB (see table 1). In such cases, it can be said that these genotypic
matings have the same segregation pattern St, say, determined by the parameters of
the common segregation distribution.

Suppose that for a given model there are m distinct segregation patterns. Let ift be
the expected proportion (probability) of matings with the St segregation pattern in
a population. Then,

m

5t= 1(9)
t=l

Let
m

01i, 02t . . . X Okt X with 10t = 1,

be the segregation probabilities. (Note that some Olt's may be equal to zero.) Further,
let

P8(,r, , rk= s! or or 0rks5t(rl r2 ** *rk) =r1!r2.! .. rk! 1 2t0 kt (10)

be the segregation distribution for the St pattern. Thus, P8 defined in (7) takes the
form

P.(ri, r2, . . . , rk) = Z4qtP8t(r1, r2, . . . X rk) . (11)
t=1

[Note that some terms in the right-hand side of eq. (11) may be zeros.]
7. Let n8 be the number of families, each of size s, randomly selected from a

population; and ria, r2a, . . . , rka with

drl, = s ,
1=1

be the observed numbers of children in categories ej, e2, . .. , ek, respectively, in the
ath family (a = 1, 2, . .. , ns). The likelihood function for the sample of n8 families,
L,(y), can be written as

ns ns m

L.(y) = JJP8(ria, r2,, . . . , rka) = TI [EZ tp8t(rla, r2a, . . . rka)7 . (12)
cr=l a=1 t=1

8. However, since there could be more than two distinct categories in classification
e, it will be more convenient to arrange the family data, not with respect to segrega-
tion patterns, but with respect to family patterns.
A family pattern, id, say, will designate a subset of distinct classes from the clas-

sification e present in the offspring.
For instance, for the ABO blood groups, the families with only U-group children

represent a pattern; with only A-group children, another pattern; with 0- and A-
group children, another pattern; 0, A and B groups, another pattern, etc. In general,
if there are k categories in classification C, the number of distinct family patterns
is 2k - 1.
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Notice that the family pattern is a certain function of the numbers r1, r2, . .. , rk.
For instance, for the pattern with only 0-group children, ri = s (i.e., r2 = r3 = ri = 0),
while for the pattern with 0-, A- and B-group children, ri + r2 + r3 = s, ri 5 0
for i = 1, 2, 3, and r4 = 0. To emphasize this, write

5, = 530(r1, r2, . . .r,k) (13)

for the flth family pattern.
The probability that a family with s children will have a pattern is with ri, r2, ...

rk children in categories C1, e2, . . ., Ck, respectively, is

Ps(5Y0; y) = ZtP.t(rl, r2, . . . rk) . (14)

Let F(,B) denote the axth family (a = 1, 2, . .. , n8), and ra, r2a, ... , rk,, denote the
number of observed children in categories Cl, C2, . . . I Ck, respectively. The subscript
(,B) indicates that this family has a particular pattern 5;#, that is,

Fa(o) = 53(ria, r2a, . . . , rk.) . (15)

Let Ps(Fa(3); T) be the probability that the ath family (with the pattern 5#) has
the observed frequencies rna, r2a, . . . , rka.. Thus,

Ps(F.(O); y) = ZiPs,t(rla, r2a, . X rka) * (16)

The likelihood function, Ls(y) defined in (12) can now be written in the form
ns ns 1

L,(y) = jJPs(Fa(3); 'y) = HI [Z tPst(ria, r2., * * , rkj)J * (17)

9. In setting up the likelihood equations, the;coefficients (s!/rl!r2! . .. rk!) in (10)
will have no role. For this reason, it is convenient to represent (10) in a slightly
different form.

Put

c(r, r2, * **rk) =r!r2! r (18)
and

T,t(r1, r2 * * X rk) = 0102t2 . . . .'k (19)

The probability Ps(5Y#; y) defined in (14) can be written in the form

P,(Y,B; y) = c,(r1, r2, . . . I rk) ZtTst(ri, r2, * * X rk) * (20)

For the ath family, the probability PS(Fa(O); y) defined in (16) takes the form

P.,(Fa(); y) = cs(rni, r2a, * ., rk)ZEOtTst(rla, r2a, . . . rka) . (21)
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The likelihood function (17) can now be written in the form

L8(y) = CsjJ [Y&0T8t(ria, r2,, ... rka)J (22)
a=1 43e'6

where
n.

Cs = JIca(ria, r2a ., rk.) (23)
a=1

10. If the total sample consists of families of sizes s = 1, 2, . . , S, then the overall
likelihood function, L(Y), is

s

L(Ty) = HLs(r). (24)
8=1

Parental Phenotypes Are Known

When the parental phenotypic mating type is known, repeat the same procedure
for constructing the likelihood function, except that now (t's (or #,6,'s) are the condi-
tional probabilities of genotypic matings, given the phenotypic mating type.

ESTIMATION OF GENE FREQUENCIES IN THE ABO-LIKE SYSTEMS FROM FAMILY DATA

Before proceeding to further theoretical problems, it will be useful to illustrate the
theory developed above by a practical example of constructing a segregation model
for estimation of gene frequencies from family data. The ABO-blood group system
for four phenotypic classes (groups 0, A, B, and AB) will be used and a model con-
structed when there is no information on the phenotypes of the parents.

Let p, q, and w, with p + q + w = 1, be the frequencies of alleles A, B, and 0,
respectively. Assuming that the population is in equilibrium, and taking a random
sample of individuals, the ML estimates of gene frequencies can be calculated using
standard methods. However, in random sampling we assume that the observa-
tions are independent, which, in practice, means that only one offspring in a family
should be tested for the blood group. In fact, often whole families are tested, and the
data are pooled together. If the total sample is large and the sizes of families are small,
the assumption of independent sampling may hold approximately. On the other hand,
for small samples and large families, this is not so. The observations within families
are correlated, and so they do not constitute a simple random sample. In such cases,
methods of complex segregation analysis are needed.

Table 1 represents a model for segregation analysis for the ABO-blood group data
under the following assumptions: population in equilibrium, complete penetrance,
and no selection. The table is arranged according to segregation patterns.

The gene frequencies, p, q, and w will be estimated. Of course, there will be no
difficulty in modifying the table by introducing extra parameters if some of the
assumptions do not hold.
When selecting families, the blood groups of the children will be tested, that is,

family patterns will be observed. Table 1 must be rearranged according to family
patterns. There are 24- 1 = 15 different family patterns. Table 2 gives some ex-
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amples. The remaining family patterns can be reconstructed from table 1 in a similar
way.

Example 1

Consider a simple example of n, = 3 families, each of size s = 4, with family pat-
terns as shown in table 3.

TABLE 1

SEGREGATION PATTERNS FOR THE ABO-BLOOD GROUP SYSTEM.
ESTIMATION OF GENE FREQUENCIES

SEGREGATION PATTERN GEN'OT' PE
(S t) MATING

1. (r= s) ............

2. (r2 =S) ............

3. (r3 =s) ...........

4. (r4 =s) ............

5. (r, +r2 =s) .........

6. (ri+r3=s).........

7. (r2+r,3=s)..

8. (r2+r4=s)...

9. (r3+r4=s).........

10. (r±+r2=s) .........

11. (r, +r3 = s) .........

12. (r2+r3+r4=S).

13. (r2+r3 +r4 =S).

14. (r2+r3+r4=S).

15. (rl+r2+r3+r4=s)..

ooxoo

AAXAA
AAXAO
OOXAA

BBXBB
BBXBO
OOXBB

AAXBB

OOXAO

OOXBO

OOXAB

AAXBO
AAXAB

AOXBB
BBXAB

AOXAO

BOXBO

AOXAB

BOXAB

ABXAB

AOXBO

EXPECT-
ED PRO-
PORTION

OF

MATINGS
(4uv)

p4
4p'w
2p2w2

q4
4q'w
2q2w2

2p2q2

4pw3

4qw'

4pqw2

4p2quw
4plq
4pq2w
4pq'

4p2w2

4q2w2

8p2qw

8pq2w

4p2q2

8pqw2

SEGREGATION
PARAMETERS

(O1 t)

0

1

0

0

0

0

0

0

0

2

2

2

0

0

0

0

4

O4
0

0

0

4

A

0

1
1

1

0

0

0

0

2

0

2

2

0

3
4

0

2

4

B

0

0

0

0

1
1
1

0

0

1

2

O
2
0

21
2

0

3
4

1
4

2

4

AB

0

0

0

0

0

0

0

1

0

0

0

2
2

2

2

10

0

4

OBSERVED FREQUENCIES

ri r2 r3 r4

SEGREGATION DISTRIBUTIONS

lrt

} 1r2

} ir3

1r4

(S !/r1 r2 !) (2 )1

(s!!rl r3 !) ()rI+r3

(S!!r2!r3 !) (I)r2+r3

(s!/r2 !r4) (2)rl+rI

}(s!/r, !r4!) (D)r2+r4

(s!lr2!r2!r4!)2)F(4)r3+r4

(S! rs!r2 !r3I)()T(4)r4 +r4

(s!/r2 !r3 !r4 !) (2)r4(4)r1+rl

(s!/r2!r3rr4 !)(24)rl+rl+r+r4



TABLE 2
FAMILY PATTERNS FOR COMPLEX SEGREGATION ANALYSIS FOR THE

ABO BLOOD SYSTEMS. ESTIMATION OF GENE FREQUENCIES

FAMILY PATTERN
.T0(ri, . . , r4)

rl =s
31 Group 0

r2=s

JT2 Group A

rTtO, r2O0
rl+r2=s

,5 Groups 0, A

r2XO, r3$O

r2+r3 = S

5:8 Groups A, B

GENOTYPE

MATING

OOxOO

OOX AO
OOXBO

AOX AO
BOXBO
AOXBO

AAXAA
AAXAO
OOXAA

AOX AO

QOX AO
OOXAB
AAXBO
AAXAB
AOX A B

BOXAB
ABXAB
AOXBO

OOX AO

AOXAO

AOXBO

OOXAB

AOX AB

BOXAB

ABXAB
AOXBO

EXPECTED
PROPORTION

4pu'3

4qu!3

4p2Uw2

4q2w.2

8pq2i2

p4

4p3w

2p2U12

4p2wu2

4pu3
4pqU,2
4p2quw

4p3q

8p2qw

8pq2wU

4p2q2
8pqW2

etc.

4pw£3

4p2w 2

8pqwP2

etc.

4pq-2

8p2qqz

8pq2wU

4p2q2
8pquw2

SEGREGATION PATTERN

t

1

5
6

10
11
15

2
2
2

10

5
7
8
8

12

13
14

15

5

10

15

7

12

13

14

15

Or, 4

lrl

(2)

)(I )r,

1r2

(3 )r2

4(2)r2

( , r2

(1 ri+r2
( 2)

(1 )rl(3)r2

(I rI±r)

( 1 ) r2+r3

(I )r2( )r3

(1)r2(1 )r3
(4 2)r(+2

} ( 4 )r23

etc.

ri#O, r^$O, r3O0
Y11 ri-+r2+r3=s AOXBO 8phw2 15 4

Groups 0, A, B

etc.

AOXAB 8p'qw,z 122 4

r2XO, r3$O, r4|O 1 | r3(1 )r2+r4
r2+r3+r4=s BOXAB 8pq2w 13 (1 )r3)r2+r4

514 Groups A, B, AB
ABXAB 4p2q2 14 ( ) 4

AOX AO 8pqw2 15 (l)r2+r3+r4
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Since p + q + w 1, only p and q need to be estimated. The likelihood function,
L4(p, q), must be constructed for this sample. For example, the first family, F1, has a
pattern of all children with 0 group (according to table 2, this is pattern 5;1), so
Fi(l) = 5F1(ri = s). From table 2 the corresponding probabilities are obtained:

P4(Fl(l); p, q) = w4 + 4w3(p + q)(D)4 + 4W2(p + q) Q)4
P4(Fl(5); p, q) = 6.4pw2[w( )4 + p(Q)2(V)2 + 2q( )4]

P4(Fl(n,); p, q) = 12 4pq[2pqw(2)(4)3 + 2qw(l)(-)3 + pq(D)2(D)2 + 2W2(1)4]

substituting w = 1 - p -q.

These equations can be simplified, but this is not essential if one is using a general
computer program for likelihood estimates. The likelihood function is

L4(p, q) = P4(Fl(1))P4(Fl(5))P4(Fl(lj))
TABLE 3

FAMILY PATTERN 5T#(ri, r4)

FAMILY
Fra((3) r7 r2 r3 r4

(0) (A) (B) (AB)

Fi(i) 4
F I ( ) ....... 2 2
F3 (I ) .. .... 1 1 2

ESTIMATION OF RECOMBINATION FRACTION IN LINKAGE

AND GENE FREQUENCIES FROM BACKCROSSES

An illustrative example for the situation when the parental phenotypic mating is
known now follows.

Let G and g be dominant and recessive alleles at the "main" locus, and D and d the
dominant and recessive alleles at the "test trait" locus (usually well-known genetic
marker), respectively. Let X be the recombination fraction between these loci; pi, ql,
with pi + qi = 1, the frequencies of alleles G and g and P2, q2, with P2 + q2 = 1, the
frequencies of alleles D and d, respectively. The notation GD will be used for double
dominant (G-D-), Gd and gD for single dominants (G-dd) and (ggD-), respec-
tively, and gd for double recessive (ggdd).

Suppose that a sample of families is observed in which parental phenotypic mating
type is Double Dominant X Double Recessive, that is, GD X gd. For an estimation of
linkage alone, only matings GDgd X ggdd will contribute effectively to the likelihood
function. Of course, this genotypic mating can only be recognized when selection is
through the children. Appropriate methods for detecting and testing linkage are de-
scribed, for instance, by M\lorton [2] and Smith [3]. If, on the other hand, gene fre-
quencies are to be estimated at the same time, families with other genotypic matings
will be useful too.

Table 4 represents a model for segregation analysis when selection is through the
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parents. The table is self-explanatory. To simplify the notation, the following two
quantities have been introduced:

2q, 2q2hi = +1 , and h2 1+2 * (25)

(Note that 'hi and 1h2 are Snyder's ratios.) The likelihood function will be now
L.(y) = L.(X, hl, h2).

Table 5 has been reconstructed from table 4 and arranged according to family
patterns. Since there were not many matings involved in each family pattern, table 4
gives the explicit equations for Ps(lfY; X, hk, h2).

TABLE 5

FAMILY PATTERNS WITHIN MATING TYPE GDXgd. ESTIMATION
OF LINKAGE AND GENE FREQUENCIES

Family Pattern 3Y0(ri. . ., r4) Probability P,(03#; X, hl, h2)

1. GD; ri=s...............................I

2. Gd; r2=s...............................

3. gD; r3=s...............................

4. gd; r4=s................................

5. GD,Gd; {ri#+r2--=} . -

6. GD gD rr+'3#O0 - - -

7. Gd,gd; {rl Or°'4S#O}.--

8. Gd,gD; {r2+r3=s}....................

9. Gd,gd; {ri+r°'-4S ..} - --

10. gD,gd; {r3+0r434SO }..

11. GD,Gd,gD;{r2r r+r= ss} - -

12. GD,Gd,gd; {r;+O+2r#o}

13. GD,gD,gd; {r4=S .....r ...........

14. Gd,gD,gd; {rr24 ....3#O=.r4#O}..........

15. GD,Gd,gD,gd; /ri O,r 2+O, r3 0r4.

rl+2+r2+3+r==s

X(I { 1-h2[1 -(1)8-1] 'I+h1Ih2+
X {j1-hl[l-(1--1X1 +(2)8+lhlh2[X8+(

(2){(1(- hi)h2+ihih2[,X+(l.X)+ (.)

2)8+(-h2)hl+2( lh2[-X8+ (I )]

(1)8+lhlh2[X8+ (1-)8]

(i)8 ( (1-hl[-rl(l-)r2++r2(l -_ )r]-

(2i)8+{ (-h2)hl+ 2hlh2-[Xr+(I-++)r3+(r3(l-

2)+llh2[X+ (1 - X+)8]

(!l)"+lhtlI2[X8+ (I1- X)I]

(2)8+lhlh2[Xr2(1 - X)r4+X+r4(1- -)r2 3

(12).+lhlh2[Xr, X-)r4+ Xr4(1 X)ra]

(21)8+lhlh2[Xr, (1_ X)r2+r3+ Xir2+r3 (I X)rl]

(1)8+l/hl 2[Xr2(l - X)rl+r4+)Xrl+r4(l -X)r2]

()8+lh1h2[Xr3+( 1 X)rl+r4+Xrl+r4(1- X))r3]

(1).+lhll12[Xr~(j- )r2+r3+Xr2+r3(l X)r4]

(12 )8+1 hih2[Xr+r4 (1-)r2+r3+ Xr2+r3(l1- )rl+r4]
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AUTOSOMAL INHERITANCE. TRUNCATED SELECTION

Suppose only those families which have at least one child with a specified trait (or
traits) are to be included in the analysis. For instance, in estimating linkage between
two loci with dominance, a sample of families with at least one child which is double
recessive, or a sample of families in which one child is single recessive at one locus and
simultaneously another child is single recessive at the second locus, will be more
appropriate than a sample of families of all kinds of matings. In such cases, a random
selection of families is still made, but those which do not satisfy our condition are
excluded from analysis. This kind of sampling will be called a truncated selection of
families. It is not, strictly speaking, selection through the children, and so the prob-
ability of ascertainment is not introduced. Let

R = Zr. (26)

denote the condition on which the truncated selection is based, and Q81(R) the prob-
ability that the condition R is satisfied for a family of size s belonging to the 8t
segregation pattern.

Let P8t(R) be the probability that the condition R is not satisfied for families of size
s within the St segregation pattern. Thus

Qst(R) = 1 - Pst(P) . (27)

Let Q8(R) denote the probability that the condition R is satisfied in families of size s
in the entire population (or within a given parental phenotypic mating type). Thus,

m m m
Qs(R) = 1 - ZEtP8(R) = E>k - Z4,P81(R)

t=l t=l t=1 (28)
m m

= 41[' - P t(R)] =I= 4tQst(R).
t=1 t=1

The probability, P,,(ri, r2, . . . X rk; y R), that a family among those satisfying the
condition R will have ri children in the category e1, r2 children in the category
e2, **. , rk children in the category ek, with

Zr1 s and Zr1. =R
is

Pd(rJ, r2, * * * , rk; y R) = [74tPet(ri, r2, . . . , rk)Jlt/[1Qt(R)] * (29)

By arranging the family data according to family patterns and using arguments
similar to those for complete selection through parents, the probability P8 defined in
(29) for the family F, (0 is

Ps(Fa(f); y IR) = rtPt(r, x rka)] [Z4OtQ{R(a)}] (30)
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where R(a) denotes the condition R defined in (26) observed in the ath family, that is,

R(a) = Zr1 (31)

Denoting

C8{R(a)} sr!r - , and WV,t{R(a)} = 0G'1ia 6112C * (32)
r1 !2r,f 1 02

with

Zrlia = R (a)

(30) may be represented in the form analogous to (21), that is,

PS~(F.(#); 'yjIR) c=(a) tT. t (rlt r2a,, rka)] [/ ZL stw R(&1]a a (33)

with
c'(a) = [cs(rla, r2a, . ., rka)]/[cs{R(a)}], (34)

where Cs(rla, r2a, . . . , rka) and Tst(ria, r2a, . . . rka) are evaluated for the ath family
from (18) and (19), respectively.

If n8 families, each of size s, are observed, the likelihood function, L8(y), takes the
form

Ls(y) = HJPs(F.(fl); TIR)
a=l (35)

- CJ Z4tTst(ria, r2a, .. . . rka)1 [ZE tWstfR(a)f]
where

ns

C'= Hc'(a). (36)
a-1

Modification for cases in which parental phenotypic mating types are known is
straightforward. 1Iodifications when families are ascertained through the children
with ascertainment probability ir should not cause difficulties (see [1]).

X-LINKED INHERITANCE

When the character is X-linked, the genotypes of the mother and of the father
must be distinguished; in the general case, there may befi distinct female genotypes
andf2 male genotypes. The matings uv and vu will now not be the same. Also, female
and male offspring must be distinguished. Following arguments in the previous sec-
tion, it should not be difficult to construct the likelihood function for daughters and
for sons and combine them to obtain estimates of parameters under consideration.

ESTIMATION AND TESTING HYPOTHESES

If the total sample of all families, N, is sufficiently large, approximate methods of
evaluating multinomial scores and the information matrix are applied in order to
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obtain the maximum likelihood estimates, j Y=(1i, '2, . . . , YM), and to construct
test statistics for testing hypotheses about these parameters and about homogeneity
of the analyzed material. The general theory, with some numerical examples, has been
presented in a previous paper [1]. However, to make this paper self-contained, the
standard procedures will be briefly outlined, using for illustration the likelihood
function defined in (35).

Likelihood Equations and Information Matrix

Put

A, = A8(a, 'y) = Z XtT,t(ria, r2a, . . . , rk,)
and (37)

B8 = B8o(a, y) = DttW8t[R(a)].

The likelihood function in (35) can be written as

L,,(y) = L8 = C'H[A8(a, y)/B,(a, y)] = CH(A8/B8) X (38)
a=1 cr=1

and its logarithm
n.,

log L8 = log C' + E(log A8-log B8) . (39)
a=l

Differentiating (39) with respect to y,, we obtain

a log L, E 1A _ 1 aBS i= ,2,. .., M. (40)
49Yi a-i 8, a-y2 B8 -YJPut

Uj 8(a; y) = ui8(t) = A, aA, B1 aB' (41)

i = 1, 2, . . ., M, a = 1, 2, . .. , n,. The quantity ui;s(a) denotes an individual score
for the ath family with respect to the parameter yi.

The total score for a sample of n8 families, Ui;s, is
n8

Ui-S = Eui;8,(a) , i = 1) 2, ... ., My (42)
af=l

and the overall score, Ui, when families of sizes s = 1, 2, . . , S are taken into ac-

count, is
S S n8

U = Eui= E Eui;8(a). (43)
8=1 8=1 a=l

To obtain the ML estimates, y' = (A', -2, . . . Am), solve M (linearly independent)
equations of the form

U= ,[t a - = 0, =1, 2, ..., M. (44)
8=1 a_ 1 A,J-i B 9Y
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A unique set of solutions exists provided
s

M < -(s-1) = S(S - 1)/2,
which is usually the case.
The elements of the expected information matrix, Is(y) = I, are

Iii;s(y) = Iii s = Bi%u;sa(a) , i = 1, 2,...,M,
and a=1s(5

ns

Iij;s(y) = 'ij;s = B :s(a)uj;s(a) , s,j = 1 2, . . ., M; i j.a=l B

These quantities should be evaluated for the expected values of the parameters
y= (71y 7Y2, - * , M). If these values are unknown, substitute the estimates
= ('Yi Y2, ... , 7M) and obtain the estimated information matrix I5(y).
The elements of the overall information matrix, I(y) = I, are

s s

Iii = ZIii;8; Iij = ZIij;s, i,j = 1, 2, . . . , M ;i #.j, (46)
s-= s=1

so that
s

I= ZIg. (47)
s=1

Testing Hypotheses

Let Ho: y = yo be the null hypothesis which specifies all the parameters. Let

U8(YO) = [U1;8(YO), U2.8(TO), . . ., UM8s(YO)] (48)

be the 1 X M vector of scores Ui;s evaluated for the values y = yo, and I8(yo) be the
expected information matrix.

Let Ho be another null hypothesis that all families obey the same segregation
ratios, or that the data are homogeneous.

If both Ho and H' are true simultaneously, the statistic
s

XTotal = E U(yo)I8 1(yo) U5(yo) (49)
8=2

is approximately distributed as x2 with 4M(2S - M - 1) degrees of freedom (for jus-
tification of the number of df see Elandt-Johnson [1]).

If XTotal is significant, this means that either Ho is not true or the data are not
homogeneous (H' is not true), or both. Let

s s

U(yo) = Z Us(yo), and I(yo) = ZIs(yo) (50)s-i a=1

be the overall vector of scores and the expected (under Ho) information matrix,
respectively, for combined data from families of all sizes.
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If Ho is "true on the average," the statistic

Xco01b = U'(ro)r1(to) U(o) (51)

is approximately distributed as x2 with M df.
To test the hypothesis H', that is, about homogeneity of family data alone, use the

statistic

XDiff = XTotal - Xcomb. (52)

If the data are homogeneous, Xj,iff is approximately distributed as x2 with
2M(2S - M - 1) - M = 2M(2S - M - 3) df.
The results of the tests using these three statistics should be interpreted jointly.

For instance, if:
1. XTotal significant, X&omb significant, X2 iff nonsignificant, this means that Ho is

probably not true and should be rejected, but the data are homogeneous with
respect to another unknown hypothesis, H`x) say.

2. X2otal significant, X2omb significant, X2jff significant indicates that not only Ho
is not true but also the data are not homogeneous.

When all (or some) parameters are not specified by Ho, we substitute their esti-
mators. Of course, the number of degrees of freedom has to be appropriately cor-
rected.

Putting BS(CY, T) = 1 in (38) gives complete selection of families.
It is obvious that methods for complex segregation analysis require high-speed

computer facilities. Since several statistical and genetic laboratories have general
programs for solving maximum likelihood equations, details are not given about dif-
ferentiation and iteration procedures. An appendix in a previous paper [1] might be
useful for those who wish to design their own programs.

SUMMARY

General models for segregation analysis for common genetic traits, with offspring
classified into more than two distinct categories, have been derived. Problems of
estimating gene frequencies for such common traits as the ABO-blood group system
and of estimating linkage and gene frequencies from family data have been presented.
Likelihood equations and X2 analysis have been briefly outlined.
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